Pyrite sulfur isotopes reveal glacial−interglacial environmental changes
نویسندگان
چکیده
منابع مشابه
Pyrite sulfur isotopes reveal glacial-interglacial environmental changes.
The sulfur biogeochemical cycle plays a key role in regulating Earth's surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth's surface environment, including...
متن کاملPathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes.
It is generally thought that the sulfate reduction metabolism is ancient and would have been established well before the Neoarchean. It is puzzling, therefore, that the sulfur isotope record of the Neoarchean is characterized by a signal of atmospheric mass-independent chemistry rather than a strong overprint by sulfate reducers. Here, we present a study of the four sulfur isotopes obtained usi...
متن کاملSulfur chemistry in bacterial leaching of pyrite.
In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an organism without sulfur-oxidizing capacity, besides the production of tetra- and pentathionate, a considerable accumulation of elemental sulfur occurred. A similar result was obtained for chemical oxidation assays with acidic, sterile iron(III) ion-containing solutions. In the case of Thiobacillus ferrooxidans, only slight amo...
متن کاملSulfur isotopes of organic matter preserved in 3.45 Gyr- old stromatolites reveal microbial metabolism
متن کامل
Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism.
The 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats. To better understand the biogeochemistry of these rocks, we performed microsc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2017
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1618245114